高级检索
当前位置: 首页 > 详情页

Optimize output of a piezoelectric cantilever by machine learning ensemble algorithms

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Qilu Univ Technol, Shandong Inst Mech Design & Res, Shandong Acad Sci, Sch Mech Engn, Jinan 250353, Shandong, Peoples R China [2]First Peoples Hosp Qu Jing, Dept Pathol, Qu Jing 655000, Yunnan, Peoples R China
出处:
ISSN:

关键词: Piezoelectric properties Energy harvesters Machine learning Supervised algorithms

摘要:
Due to fast development of various electronic products in our life, the demand for sustainable energy supply devices has increased. Vibration energy harvest systems made by piezoelectric materials such as lead zirconate titanate (PZT) have gradually attracted widespread attention. For specific usage scenarios, we need to establish the relationship between geometry parameters and output voltage/power quickly, which is a difficult job. Here, we demonstrated that through processing 2430 sets experimental output voltage/power data generated by PZT cantilevers, we could find out the relationship between the output, the physical parameters and working frequency via machine learning algorithms quickly. Three machine learning ensemble algorithms (gradient boosting regression tree, random forest and extreme gradient boosting) are used to process these experimental data and the optimal algorithm is found. Our work showed that machine learning ensemble algorithm can help us design energy harvest systems efficiently.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 材料科学
小类 | 4 区 材料科学:综合
最新[2023]版:
大类 | 3 区 材料科学
小类 | 3 区 材料科学:综合
JCR分区:
出版当年[2021]版:
Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
最新[2023]版:
Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Qilu Univ Technol, Shandong Inst Mech Design & Res, Shandong Acad Sci, Sch Mech Engn, Jinan 250353, Shandong, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号