高级检索
当前位置: 首页 > 详情页

Injectable hydrogel with dual-sensitive behavior for targeted delivery of oncostatin M to improve cardiac restoration after myocardial infarction

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China. [2]Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, P. R. China. [3]Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, P. R. China. [4]Yunnan Key Laboratory of Innovative Application of Traditional Chinese Medicine, Department of Cardiovascular Surgery, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650100, P. R. China.
出处:
ISSN:

摘要:
Myocardial infarction (MI) is a common cardiovascular disease that seriously endangers human health and complex pathophysiology (e.g., coronary artery obstruction, myocardial apoptosis, necrosis, inflammation, fibrosis, etc.) is involved. Therein, the loss of cardiomyocytes after MI in adults leads to gradual heart failure, which probably brings irreparable damage to the patient. Unfortunately, due to a cluster of limitations, currently used MI repair approaches always exhibit simple functions, low efficiency, and can hardly match the myocardial ischemia environment and clinical needs. In this study, we selected oncostatin M (OSM), a pleiotropic cytokine belonging to the interleukin-6 family that possesses an important role in cardiomyocyte dedifferentiation, cell proliferation, and regulation of inflammatory processes. Moreover, an injectable hydrogel with pH- and temperature-responsive behavior that can react with the acidic microenvironment of the ischemic myocardium was developed to deliver OSM locally. The functional hydrogel (poly (chitosan-co-citric acid-co-N-isopropyl acrylamide), P(CS-CA-NIPAM)) was fabricated by the facile reversible addition-fragmentation chain transfer polymerization and can be injected into the lesion site directly. After the gelation in situ, the OSM-loaded hydrogel exhibited continuous and localized release of OSM in response to specific pH and changes in MI rats, thereby accelerating angiogenesis and proliferation of cardiomyocytes, inhibiting myocardial fibrosis and improving cardiac function effectively. This study may provide a new perspective for the application of dual-sensitive hydrogels clinically, especially in tissue engineering for MI repair and drug delivery.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 3 区 材料科学:生物材料
最新[2025]版:
大类 | 3 区 材料科学
小类 | 3 区 材料科学:生物材料
JCR分区:
出版当年[2021]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Cardiology, the Second Affiliated Hospital of Kunming Medical University, Kunming 650101, P. R. China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:87215 今日访问量:0 总访问量:716 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号