高级检索
当前位置: 首页 > 详情页

HSF4 promotes tumor progression of colorectal cancer by transactivating c-MET

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Medical Oncology, The First People’s Hospital of Yunnan Province, Afliated Hospital of Kunming University of Science and Technology, Kunming 650000, China [2]Faculty of Medicine, Kunming University of Science and Technology, Kunming 650000, China [3]Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Afliated Hospital of Kunming University of Science and Technology, 650000 Kunming, China [4]Department of Pathology, The First People’s Hospital of Yunnan Province, Afliated Hospital of Kunming University of Science and Technology, Kunming 650000, China
出处:
ISSN:

关键词: HSF4 Transcription factor Transactivation c-MET Colorectal cancer

摘要:
Heat shock factors (HSFs) are a family of transcription factors, composed of HSF1, HSF2, and HSF4, to regulate cell stress reaction for maintaining cellular homeostasis in response to adverse stimuli. Recent studies have disclosed the roles of HSF1 and HSF2 in modulating tumor development, including colorectal cancer (CRC). However, HSF4, which is closely associated with pathology of congenital cataracts, remains less studied in tumors. In this study, we aimed to describe the regulatory effects of HSF4 and underlying molecular mechanism in CRC progression. By bioinformatic analysis of TCGA database and TMA-IHC assay, we identified that the expression of HSF4 was significantly upregulated in CRCs compared with normal colonic tissues and was a prognostic factor of poor outcomes of CRC patients. Function assays, including CCK-8, colony formation, transwell assays, and xenografted mouse model, were employed to verify that HSF4 promoted cell growth, colony formation, invasion of CRC cells in vitro, and tumor growth in vivo as a potential oncogenic factor. Mechanistically, results of Chromatin immunoprecipitation (ChIP) and immunoblotting assays revealed that HSF4 associated directly to MET promoter to enhance expression of c-MET, a well-known oncogene in multiple cancers, thus fueling the activity of downstream ERK1/2 and AKT signaling pathways. In further rescue experiments, restoration of c-MET expression abolished inhibitory cell growth and invasion induced by downregulated HSF4 expression. To sum up, our findings describe a crucial role of HSF4 in CRC progression by enhancing activity of c-MET and downstream ERK1/2 and AKT signaling pathways, and highlight HSF4 as a potential therapeutic target for anti-CRC treatment.

基金:

基金编号: 81860522 81860509 2020LCZXKF-XH02 2021LCZXXF-XH03 202205AC160070 2018HB049 D-2017002

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 生物学
小类 | 3 区 细胞生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 3 区 细胞生物学
JCR分区:
出版当年[2022]版:
Q2 CELL BIOLOGY
最新[2023]版:
Q3 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Medical Oncology, The First People’s Hospital of Yunnan Province, Afliated Hospital of Kunming University of Science and Technology, Kunming 650000, China [2]Faculty of Medicine, Kunming University of Science and Technology, Kunming 650000, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号