高级检索
当前位置: 首页 > 详情页

Identification of ferroptosis‑associated genes in chronic kidney disease

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China. [2]Department of Urology, The First Affiliated Hospital of The Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China. [3]Department of Radiology, Kunming Children's Hospital, Kunming, Yunnan 650034, P.R. China. [4]Department of Radiology, Kunming Medical University and The Third Affiliated Hospital, Kunming, Yunnan 650500, P.R. China.
出处:
ISSN:

摘要:
Ferroptosis serves a pivotal role in developing chronic kidney disease (CKD). The present study aimed to detect and confirm the relevance of potential ferroptosis-related genes in CKD using bioinformatics and experimentation strategies. The original GSE15072 mRNA expression dataset was retrieved from the Gene Expression Omnibus database. Subsequently, the potential differentially expressed genes associated with ferroptosis of CKD were screened using R software. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analyses, correlation analysis and protein-protein interactions (PPI) were performed for differentially expressed ferroptosis-associated genes (DFGs). Lastly, the expression levels of the top nine DFGs were measured in the kidney tissue of Adriamycin-induced CKD rats and healthy controls via reverse transcription-quantitative (RT-q)PCR analysis. Overall, 49 DFGs among 21 patients with CKD and nine healthy controls were identified. GO and KEGG enrichment analyses demonstrated that these DFGs were primarily involved in 'ferroptosis' and 'mitophagy'. PPI findings indicated that these ferroptosis-associated genes interacted with one another. RT-qPCR of CKD tissue from the rat model revealed that STAT3, MAPK14, heat shock protein (HSP)A5, MTOR and solute carrier family 2 member 1 (SLC2A1) mRNA levels in CKD were upregulated. Overall, 49 potential ferroptosis-associated genes of CKD were identified via bioinformatics analyses. STAT3, MAPK14, HSPA5, MTOR and SLC2A1 may influence CKD onset by regulating ferroptosis. The present results add to the existing body of knowledge about CKD and may be useful in the treatment of CKD.Copyright: © Shao et al.

语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
第一作者:
第一作者机构: [1]Department of Radiology, Kunming Medical University and The Second Affiliated Hospital, Kunming, Yunnan 650500, P.R. China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82325 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号