高级检索
当前位置: 首页 > 详情页

A perioperative risk assessment dataset with multi-view data based on online accelerated pairwise comparison

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Yunnan Univ, Kunming 650000, Peoples R China [2]JD Explore Acad, Beijing 100000, Peoples R China [3]First Peoples Hosp Yunnan Prov, Kunming 650000, Peoples R China [4]Chongqing Univ Posts & Telecommun, Chongqing 400065, Peoples R China
出处:
ISSN:

关键词: Insertion sort Perioperative risk assessment Multi-view data Pairwise comparison

摘要:
Perioperative risk assessment (PRA) aims to evaluate the risk to patients from surgery, and knowing the risk can contribute to allocating scarce medical resources. Despite the clinical significance of PRA, to our best knowledge, there is currently no comprehensive perioperative risk (PR) dataset to facilitate the development of standard criteria and machine learning-based models for PRA. In this paper, we propose the first perioperative risk assessment dataset (PRAD) with multi-view data by applying online accelerated pairwise comparison (OAPC). Specifically, OAPC combines prior knowledge-based presorting and online probability insertion sorting to efficiently obtain robust pair comparisons. To obtain labels from doctors conveniently, we develop an online PRA system to enable doctors to label medical records anywhere and anytime. Our PRAD provides 300 medical records with multi-view data, including various types of preoperative and postoperative data, together with the corresponding comparisons and risk scores obtained from doctors with different experiences. Furthermore, we analyze the PRAD to investigate relationships between the patient's preoperative data and risk score, e.g., cardiovascular disease history is highly related to PR, providing a complementary view with current research on PRA. The labeling procedure is still ongoing, and additional records and analyses will be made available in the future. We believe our dataset and analysis provide new insights that will significantly facilitate the building of new PRA models.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:人工智能 1 区 计算机:理论方法
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:人工智能 1 区 计算机:理论方法
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, THEORY & METHODS
最新[2023]版:
Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Yunnan Univ, Kunming 650000, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号