高级检索
当前位置: 首页 > 详情页

Integrated analysis of radiomics, RNA, and clinicopathologic phenotype reveals biological basis of prognostic risk stratification in colorectal cancer

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:领军期刊

机构: [1]Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China [2]Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China [3]Department of Radiation Oncology (Maastro), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht 6229 ER, the Netherlands [4]Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China [5]Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming 650106, China [6]Department of Pathology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China [7]Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
出处:
ISSN:

摘要:
Radiomics, with its transformative potential for predicting colorectal cancer (CRC) prognosis, encounters challenges in clinical translation due to the unclear biological basis of risk stratification [1]. Bridging this gap is pivotal, and the emerging field of radiogenomics, situated at the intersection of radiomics and genomics, presents an opportunity to unravel the intricate relationship between imaging representations and molecular pathway dysregulation [2,3]. However, one-way association analyses have provided insufficient evidence, prompting the need for a multi-phase radiogenomics strategy. This strategy encompasses (1) the employment of tightly integrated forward and reverse radiogenomics engineering approaches [4], (2) the verification of micro-macro level biological associations [5], and (3) the validation of the radiomics signature across different datasets [6].

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 1 区 综合性期刊
小类 | 1 区 综合性期刊
JCR分区:
出版当年[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China [2]Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Radiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510080, China [2]Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou 510080, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:84979 今日访问量:0 总访问量:692 更新日期:2025-02-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号