The escalating prevalence of carbapenem resistance in Gram-negative bacteria presents a critical therapeutic challenge, demanding urgent elucidation of novel resistance mechanisms. This review systematically examines the emerging role of outer membrane vesicles (OMVs) as multifunctional mediators of carbapenem resistance, synthesizing recent advances in understanding their biological properties and mechanistic contributions. Through comprehensive analysis of (3-lactamase dissemination pathways, we demonstrate that OMVs are extracellular vectors facilitating antibiotic degradation through enzymatic cargo delivery while concurrently acting as genetic transmission vehicles for resistance determinants. Crucially, OMVs exhibit functional versatility in enhancing bacterial survival via dual mechanisms: structurally, by promoting biofilm matrix formation that establishes antibiotic-protected niches, and immunologically, through modulation of host-pathogen interactions that impair microbial clearance. The review further identifies OMV-mediated antibiotic sequestration and competitive binding as underappreciated resistance amplifiers. These insights refine our understanding of resistance evolution and reveal OMV biogenesis pathways as promising therapeutic targets. This synthesis establishes OMVs as central players in carbapenem resistance architecture, providing a strategic framework for developing countermeasures against multidrug-resistant infections.
基金:
National Natural Science Foundation of China [82160403]; Young and Middle-aged Academic and Technical Leaders Talent Project [202305AC160023]; Yunnan Science and Technology Commission [202101AY070001-247]; Yunnan Provincial Science and Technology Department and Kunming Medical University