高级检索
当前位置: 首页 > 详情页

CEBPB activates NRF2 to regulate the MAPK pathway through DUSP1 to promote proliferation and antioxidant capacity in ovarian cancer cells

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Dept Obstet & Gynecol, Affiliated Hosp, 157 Jinbi Rd, Kunming 650032, Peoples R China [2]Kunming Med Univ, Affiliated Hosp 2, Dept Urol, 374 Dianmian Ave, Kunming 650101, Peoples R China
出处:
ISSN:

关键词: Ovarian cancer CEBPB NRF2 DUSP1 MAPK pathway

摘要:
NRF2, a crucial antioxidant transcription factor in ovarian cancer (OC), is closely associated with CEBPB activation. However, the regulatory mechanism of NRF2 by CEBPB in OC remains poorly understood. In this study, we systematically evaluated the malignant behavior of SKOV3 and A2780 cells through comprehensive approaches, including CCK-8 kits, clone formation assays, and flow cytometry analysis. Cellular antioxidant capacity was quantitatively assessed using the DCFH-DA and total-antioxidant capacity (T-AOC) assays. Molecular mechanisms were investigated through multiple experimental approaches: the interaction between NRF2 and the DUSP1 promoter was examined using dual fluorescence reporter assays, while the activation status of CEBPB, NRF2, DUSP1, antioxidant proteins, and MAPK pathway components was analyzed via immunofluorescence and western blotting. Our findings demonstrate that CEBPB overexpression significantly enhanced cellular proliferation, clone formation, cell cycle progression, and antioxidant capacity, while simultaneously reducing apoptosis rates and reactive oxygen species (ROS) levels. Conversely, CEBPB knockdown or NRF2 inhibition produced opposing effects. These results establish that CEBPB-mediated NRF2 activation promotes OC cell proliferation and antioxidant defense mechanisms. Mechanistically, we identified that NRF2 directly binds to the DUSP1 promoter, as confirmed by dual-luciferase reporter assays. NRF2 activation led to upregulation of DUSP1 and phosphorylated ERK1/2 levels, while downregulating JNK and p38 phosphorylation. These findings were further validated in vivo, confirming that CEBPB activates NRF2 to regulate the MAPK pathway through DUSP1, thereby promoting OC cell proliferation and antioxidant capacity. In conclusion, our study reveals a novel regulatory axis in which CEBPB activates NRF2 to regulate the MAPK pathway via DUSP1, driving malignant progression and enhancing antioxidant activity in OC.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2025]版:
大类 | 3 区 生物学
小类 | 4 区 细胞生物学
JCR分区:
出版当年[2024]版:
Q3 CELL BIOLOGY
最新[2024]版:
Q3 CELL BIOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Dept Obstet & Gynecol, Affiliated Hosp, 157 Jinbi Rd, Kunming 650032, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:95735 今日访问量:0 总访问量:832 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号 ICP备案:滇ICP备15003244号