高级检索
当前位置: 首页 > 详情页

Effect of stromal cell-derived factor-1/CXCR4 axis in neural stem cell transplantation for Parkinson's disease

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 统计源期刊 ◇ CSCD-C ◇ 卓越:梯队期刊

机构: [1]Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China [2]Diagnosis Prenatal Unit, Department of Obstetrics, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China [3]The People’s Hospital of Chuxiong Yi Autonomous Prefecture, Chuxiong, Yunnan Province, China [4]Rehabilitation Engineering Research Laboratory, Biomedicine Engineering Research Center, Kunming Medical University, Kunming, Yunnan Province, China
出处:
ISSN:

关键词: AMD3100 corpus striatum CXCR4 neural stem cells Parkinson's disease stromal cell-derived factor-1 substantia nigra

摘要:
Previous studies have shown that neural stem cell transplantation has the potential to treat Parkinson's disease, but its specific mechanism of action is still unclear. Stromal cell-derived factor-1 and its receptor, chemokine receptor 4 (CXCR4), are important regulators of cell migration. We speculated that the CXCR4/stromal cell-derived factor 1 axis may be involved in the therapeutic effect of neural stem cell transplantation in the treatment of Parkinson's disease. A Parkinson's disease rat model was injected with 6-hydroxydopamine via the right ascending nigrostriatal dopaminergic pathway, and then treated with 5 mu L of neural stem cell suspension (1.5 x 10(4)/L) in the right substantia nigra. Rats were intraperitoneally injected once daily for 3 days with 1.25 mL/kg of the CXCR4 antagonist AMD3100 to observe changes after neural stem cell transplantation. Parkinson-like behavior in rats was detected using apomorphine-induced rotation. Immunofluorescence staining was used to determine the immunoreactivity of tyrosine hydroxylase, CXCR4, and stromal cell-derived factor-1 in the brain. Using quantitative real-time polymerase chain reaction, the mRNA expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra were measured. In addition, western blot assays were performed to analyze the protein expression of stromal cell-derived factor-1 and CXCR4. Our results demonstrated that neural stem cell transplantation noticeably reduced apomorphine-induced rotation, increased the mRNA and protein expression of stromal cell-derived factor-1 and CXCR4 in the right substantia nigra, and enhanced the immunoreactivity of tyrosine hydroxylase, CXCR4, and stromal cell-derived factor-1 in the brain. Injection of AMD3100 inhibited the aforementioned effects. These findings suggest that the stromal cell-derived factor-1/CXCR4 axis may play a significant role in the therapeutic effect of neural stem cell transplantation in a rat model of Parkinson's disease.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 细胞生物学 3 区 神经科学
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 细胞生物学 3 区 神经科学
JCR分区:
出版当年[2019]版:
Q2 NEUROSCIENCES Q3 CELL BIOLOGY
最新[2023]版:
Q1 NEUROSCIENCES Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号