Background/Aims: Abnormal fatty acid beta oxidation has been associated with obesity and type 2 diabetes. Resistin is an adipokine that has been considered as a potential factor in obesity-mediated insulin resistance and type 2 diabetes. However, the effect of resistin on fatty acid beta oxidation needs to be elucidated. Methods: We detected the effects of resistin on the expression of fatty acid oxidation (FAO) transcriptional regulatory genes, the fatty acid transport gene, and mitochondrial beta-oxidation genes using real-time PCR. The rate of FAO was measured using C-14-palmitate. Immunofluorescence assay and western blot analysis were used to explore the underlying molecular mechanisms. Results: Resistin leads to a reduction in expression of the FAO transcriptional regulatory genes ERRa and NOR1, the fatty acid transport gene CD36, and the mitochondrial beta-oxidation genes CPT1, MCAD, and ACO. Importantly, treatment with resistin led to a reduction in the rate of cellular fatty acid oxidation. In addition, treatment with resistin reduced phosphorylation of acetyl CoA carboxylase (ACC) (inhibitory). Mechanistically, resistin inhibited the activation of CREB, resulting in suppression of PGC-1 alpha. Importantly, overexpressing PGC-1 alpha can rescue the inhibitory effects of resistin on fatty acid p oxidation. Conclusions: Activating the transcriptional activity of CREB using small molecular chemicals is a potential pharmacological strategy for preventing the inhibitory effects of resistin on fatty acid p oxidation. (C) 2018 The Author(s) Published by S. Karger AG, Basel.
基金:
National Natural Science Foundation of China F [81660466, 81360398]; Foundation of Yunnan Provincial Bureau of Health [2016NS224]; Yunnan Health Training Project of High Level Talents [H-201642]