高级检索
当前位置: 首页 > 详情页

Sequential controlled-released dual-drug loaded scaffold for guided bone regeneration in a rat fenestration defect model

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Department of Materials Science and Engineering, Jinan Univeristy, Guangzhou, China. [2]The First Affiliated Hospital of Jinan University, Guangzhou, China. [3]School of Materials Science and Engineering, South China University of Technology, Guangzhou, China. [4]Affiliated Hospital of Kunming University of Science and Technology, Kunming, China.
出处:
ISSN:

摘要:
A microbially-induced inflammatory periodontal disease is the main initiator to disrupt the periodontium. It is desirable to develop a newly guided bone regeneration (GBR) scaffold to accomplish the periodontal tissue regeneration for the concurrent control of inflammation. A novel therapeutic solution for GBR based on 3D multifunctional scaffolds, which combines the merits of osseous regeneration and local anti-inflammatory drug delivery, has been developed. The 3D dual-drug delivery scaffold (DDDS) loaded with parthenolide and naringin was successfully developed by thermally-induced phase separation techniques. The DDDS was hierarchically interconnected to the porous PLLA scaffold loaded with the hydrophobic parthenolide. In addition, the hydrophilic naringin loaded in chitosan microspheres was embedded in the scaffold. In vitro drug release profile results revealed that the DDDS showed an efficient sequential controlled release pattern with parthenolide delivered rapidly, followed by naringin delivered in a more sustained manner. Cell viability of MC3T3-E1 showed a combined effect of dual-drug delivery. Hemolysis of the DDDS was 1.84 +/- 0.44%, which is less than that of the pure PLLA scaffold. To further evaluate the in vivo guided bone regeneration effect of the DDDS, a rat fenestration defect model was generated. The defects were harvested after 4 and 8 weeks for micro-CT and histological observation. The results suggested that the DDDS group had significantly increased the regenerated bone volume fraction compared to both the control and PLLA groups at 8 weeks, which was in parallel with the reduced expression of IL-6. This DDDS, as a GBR scaffold, might be utilized as a novel adjunctive treatment in periodontitis.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 1 区 工程技术
小类 | 2 区 材料科学:生物材料
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 材料科学:生物材料
JCR分区:
出版当年[2016]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q1 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]Department of Materials Science and Engineering, Jinan Univeristy, Guangzhou, China. [2]The First Affiliated Hospital of Jinan University, Guangzhou, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号