A Nomogram Based on CT Deep Learning Signature: A Potential Tool for the Prediction of Overall Survival in Resected Non-Small Cell Lung Cancer Patients
机构:[1]Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People’s Republic of China南方医科大学珠江医院[2]School of Automation Science and Engineering, South China University of Technology, Guangzhou, 510641, People’s Republic of China[3]Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China[4]Department of Radiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People’s Republic of China[5]Department Of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China
Purpose: To develop and further validate a deep learning signature-based nomogram from computed tomography (CT) images for prediction of the overall survival (OS) in resected non-small cell lung cancer (NSCLC) patients. Patients and Methods: A total of 1792 deep learning features were extracted from nonenhanced and venous-phase CT images for each NSCLC patient in training cohort (n=231). Then, a deep learning signature was built with the least absolute shrinkage and selection operator (LASSO) Cox regression model for OS estimation. At last, a nomogram was constructed with the signature and other independent clinical risk factors. The performance of nomogram was assessed by discrimination, calibration and clinical usefulness. In addition, in order to quantify the improvement in performance added by deep learning signature, the net reclassification improvement (NRI) was calculated. The results were validated in external validation cohort (n=77). Results: A deep learning signature with 9 selected features was significantly associated with OS in both training cohort (hazard ratio [HR]=5.455, 95% CI: 3.393-8.769, P<0.001) and external validation cohort (HR=3.029, 95% CI: 1.673-5.485, P=0.004). The nomogram combining deep learning signature with clinical risk factors of TNM stage, lymphatic vessel invasion and differentiation grade showed favorable discriminative ability with C-index of 0.800 as well as a good calibration, which was validated in external validation cohort (C-index=0.723). Additional value of deep learning signature to the nomogram was statistically significant (NRI=0.093, P=0.027 for training cohort; NRI=0.106, P=0.040 for validation cohort). Decision curve analysis confirmed the clinical usefulness of this nomogram in predicting OS. Conclusion: The deep learning signature-based nomogram is a robust tool for prognostic prediction in resected NSCLC patients.
基金:
National Natural Scientific Foundation of ChinaNational Natural Science Foundation of China (NSFC) [82072090, 81601469]; Natural Science Foundation of Guangdong Province in ChinaNational Natural Science Foundation of Guangdong Province [2018A030313511]; Guangzhou Science and Technology Project of Health [20191A011002]; Clinical Research Startup Program of Southern Medical University by Highlevel University Construction Funding of Guangdong Provincial Department of Education [LC2016PY034]
第一作者机构:[1]Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People’s Republic of China
共同第一作者:
通讯作者:
通讯机构:[1]Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People’s Republic of China[3]Department of Radiology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People’s Republic of China[5]Department Of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China[*1]Department of Radiology, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, People’s Republic of China[*2]Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People’s Republic of China
推荐引用方式(GB/T 7714):
Lin Ting,Mai Jinhai,Yan Meng,et al.A Nomogram Based on CT Deep Learning Signature: A Potential Tool for the Prediction of Overall Survival in Resected Non-Small Cell Lung Cancer Patients[J].CANCER MANAGEMENT AND RESEARCH.2021,13:2897-2906.doi:10.2147/CMAR.S299020.
APA:
Lin, Ting,Mai, Jinhai,Yan, Meng,Li, Zhenhui,Quan, Xianyue&Chen, Xin.(2021).A Nomogram Based on CT Deep Learning Signature: A Potential Tool for the Prediction of Overall Survival in Resected Non-Small Cell Lung Cancer Patients.CANCER MANAGEMENT AND RESEARCH,13,
MLA:
Lin, Ting,et al."A Nomogram Based on CT Deep Learning Signature: A Potential Tool for the Prediction of Overall Survival in Resected Non-Small Cell Lung Cancer Patients".CANCER MANAGEMENT AND RESEARCH 13.(2021):2897-2906