资源类型:
期刊
WOS体系:
Article
Pubmed体系:
Journal Article
收录情况:
◇ SCIE
文章类型:
论著
机构:
[1]Department of Electronic Engineering, Yunnan University, Kunming, China
[2]The First People’s Hospital of Yunnan Province
云南省第一人民医院
ISSN:
0169-2607
摘要:
The fundamental matrix estimation is a classic problem in computer vision. The traditional algorithms require high-precision correspondences. However, correspondences in biplanar radiographs are difficult to match accurately.We propose an end-to-end network to estimate the F-Matrix directly from BR, which includes feature extraction and regression prediction. There is no publicly available dataset of biplanar radiographs. We produce the dataset in this paper to train and test the proposed network. Four metrics, Mean Square Error, Calculating R-squared, Square Value of Extreme Constraint, and Absolute Value of Extreme Constraint are used to measure the performance of the approaches.The best Square Value of Extreme Constraint and Absolute Value of Extreme Constraint values we obtained on the datasets were 0.20 and 0.43, respectively. Compared with other methods, the estimation accuracy of FM-Net is improved by more than 53.53%.The results of experiments demonstrate that the proposed network can estimate the fundamental matrix successfully. It outperforms the classical algorithms and other deep learning-based methods.Copyright © 2022. Published by Elsevier B.V.
基金:
This work was supported by the National Natural Science Foun- dation of China under grant No. 62063034 .
被引次数:
3
WOS:
WOS:000795817800002
PubmedID:
35436658
中科院(CAS)分区:
出版当年[2022]版:
大类
|
2 区
工程技术
小类
|
2 区
计算机:跨学科应用
2 区
工程:生物医学
2 区
医学:信息
2 区
计算机:理论方法
最新[2023]版:
大类
|
2 区
医学
小类
|
2 区
计算机:跨学科应用
2 区
计算机:理论方法
2 区
工程:生物医学
2 区
医学:信息
JCR分区:
出版当年[2021]版:
Q1
COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Q1
COMPUTER SCIENCE, THEORY & METHODS
Q1
ENGINEERING, BIOMEDICAL
Q1
MEDICAL INFORMATICS
最新[2023]版:
Q1
COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Q1
COMPUTER SCIENCE, THEORY & METHODS
Q1
ENGINEERING, BIOMEDICAL
Q1
MEDICAL INFORMATICS
影响因子:
4.9
最新[2023版]
5.5
最新五年平均
7.027
出版当年[2021版]
6.521
出版当年五年平均
5.428
出版前一年[2020版]
6.1
出版后一年[2022版]
第一作者:
Li Bo
第一作者机构:
[1]Department of Electronic Engineering, Yunnan University, Kunming, China
通讯作者:
Zhang Junhua
推荐引用方式(GB/T 7714):
Li Bo,Zhang Junhua,Yang Ruiqi,et al.FM-Net: Deep Learning Network for the Fundamental Matrix Estimation from Biplanar Radiographs.[J].COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE.2022,220:doi:10.1016/j.cmpb.2022.106782.
APA:
Li Bo,Zhang Junhua,Yang Ruiqi&Li Hongjian.(2022).FM-Net: Deep Learning Network for the Fundamental Matrix Estimation from Biplanar Radiographs..COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE,220,
MLA:
Li Bo,et al."FM-Net: Deep Learning Network for the Fundamental Matrix Estimation from Biplanar Radiographs.".COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 220.(2022)