高级检索
当前位置: 首页 > 详情页

FM-Net: Deep Learning Network for the Fundamental Matrix Estimation from Biplanar Radiographs.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Electronic Engineering, Yunnan University, Kunming, China [2]The First People’s Hospital of Yunnan Province
出处:
ISSN:

摘要:
The fundamental matrix estimation is a classic problem in computer vision. The traditional algorithms require high-precision correspondences. However, correspondences in biplanar radiographs are difficult to match accurately.We propose an end-to-end network to estimate the F-Matrix directly from BR, which includes feature extraction and regression prediction. There is no publicly available dataset of biplanar radiographs. We produce the dataset in this paper to train and test the proposed network. Four metrics, Mean Square Error, Calculating R-squared, Square Value of Extreme Constraint, and Absolute Value of Extreme Constraint are used to measure the performance of the approaches.The best Square Value of Extreme Constraint and Absolute Value of Extreme Constraint values we obtained on the datasets were 0.20 and 0.43, respectively. Compared with other methods, the estimation accuracy of FM-Net is improved by more than 53.53%.The results of experiments demonstrate that the proposed network can estimate the fundamental matrix successfully. It outperforms the classical algorithms and other deep learning-based methods.Copyright © 2022. Published by Elsevier B.V.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:跨学科应用 2 区 工程:生物医学 2 区 医学:信息 2 区 计算机:理论方法
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 计算机:跨学科应用 2 区 计算机:理论方法 2 区 工程:生物医学 2 区 医学:信息
JCR分区:
出版当年[2021]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, BIOMEDICAL Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Department of Electronic Engineering, Yunnan University, Kunming, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号