高级检索
当前位置: 首页 > 详情页

Evaluation of Early Gadolinium Enhancement (EGE) and Cardiac Functional Parameters in Cine-Magnetic Resonance Imaging (MRI) on Artificial Intelligence in Patients with Acute Myocarditis: A Case-Controlled Observational Study

文献详情

资源类型:
Pubmed体系:
机构: [1]Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China (mainland). [2]Department of Radiology, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China (mainland).
出处:
ISSN:

关键词: Artificial Intelligence • Heart Diseases • Heart Function Tests • Magnetic Resonance Imaging

摘要:
<strong>BACKGROUND</strong> The diagnosis of myocarditis is challenging, and the treatment is generally delayed due to misdiagnosis or missed diagnosis. Endomyocardial biopsy (EMB) is not a specific or sensitive method. A case-controlled observational study was conducted to evaluate early gadolinium enhancement (EGE) and left ventricular functional parameters on Artificial Intelligence in cine-MRI in patients with acute myocarditis. <strong>MATERIAL AND METHODS</strong> We selected 21 patients with pathologically proven acute myocarditis. We analyzed the EGE findings (total/serial number and location of positive-segments using the 17-segment model according to the American Heart Association) and clinical characteristics (symptoms, arrhythmias in ECG, coronary angiography, and EMB). All patients were divided into positive EGE and negative EGE groups to analyze left ventricular functional parameters (LVEF, FS, LVEDD, LVEDV, LVESV, LVMM, LVSV, CO, and CI) on Artificial Intelligence. <strong>RESULTS</strong> We enrolled 21 patients (11 males) with a mean age of 32.6±9.8 years (range, 16 to 51 years). Abnormalities on EGE were found in 2/3 of patients, involving 41 segments among multiple locations on the myocardium. The differences in LVEF (40.2±10.2% <i>vs.</i> 51.3±3.6%), LVESV (69.0±16.1ml <i>vs.</i> 52.5±10.6ml) and LVSV (42.6±11.4 <i>vs.</i> 52.8±2.8 ml) on Artificial Intelligence was statistically significant between the positive EGE and negative EGE groups (p<0.05). <strong>CONCLUSIONS</strong> Our results suggest a significant role of EGE on the basis of Lake Louise criteria in evaluating patients with clinical suspicion of acute myocarditis. Parameters, including LVEF, LVESV, and LVSV, on Artificial Intelligence, may be useful independent predictors for capillary leakage and microcirculatory disturbance in myocarditis.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 医学:研究与实验
第一作者:
第一作者机构: [1]Department of Radiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, China (mainland).
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号