高级检索
当前位置: 首页 > 详情页

Non-local low-rank constraint-based self-consistent PMRI reconstruction using eigenvector maps

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China [2]Tianjin Univ, Sch Microelect, Tianjin, Peoples R China [3]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Dept Hepatobiliary Surg, Kunming, Peoples R China
出处:
ISSN:

关键词: eigenvector-based SPIRiT (ESPIRiT) non-local low-rank (NLR) operator splitting (OS) parallel magnetic resonance imaging (PMRI) weighted nuclear norm minimisation (WNNM)

摘要:
Eigenvector-based SPIRiT (ESPIRiT) can estimate multiple sets of coil sensitivity maps from the calibration matrix constructed from the auto-calibration data. Recently, the L1 norm and total variation were combined with the ESPIRiT model to improve the reconstruction quality of magnetic resonance (MR) images. To further improve the reconstruction performance, the non-local low-rank regularisation term is incorporated into the ESPIRiT model (NLR-ESPIRiT) is proposed. The proposed NLR-ESPIRiT model takes full advantage of the non-local self-similarity features of MR images. The resulting optimisation problem can be transformed into a gradient problem and a denoising problem with low-rank constraints using the operator splitting technique. The weighted nuclear norm (WNN) is applied as a surrogate of the rank. Then the denoising subproblem with the WNN can be effectively solved by using the alternating direction method of multipliers technique. For practical applications, a parameter-selecting method is proposed to obtain almost optimal parameters for the same kind of MR images. Simulation experiments on in vivo data sets demonstrate that the proposed NLR-ESPIRiT outperforms all competing traditional model-based algorithms in terms of three objective metrics and visual comparison.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 4 区 工程技术
小类 | 4 区 工程:电子与电气
最新[2023]版:
大类 | 4 区 工程技术
小类 | 4 区 工程:电子与电气
JCR分区:
出版当年[2022]版:
Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q4 ENGINEERING, ELECTRICAL & ELECTRONIC

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China [*1]Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
通讯作者:
通讯机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650500, Peoples R China [*1]Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82493 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号