高级检索
当前位置: 首页 > 详情页

Iterative self-consistent parallel magnetic resonance imaging reconstruction based on nonlocal low-rank regularization.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China [2]Department of Hepatobiliary Surgery, The First People's Hospital of Yunnan Province, Kunming 650030, China [3]School of Microelectronics, Tianjin University, Tianjin 300072, China
出处:
ISSN:

关键词: Iterative self-consistent parallel imaging reconstruction (SPIRiT) Nonlocal low-rank (NLR) Nash equilibrium (NE) Parallel magnetic resonance imaging (PMRI) Compressed sensing (CS) Alternating direction method of multipliers(ADMM) Weighted nuclear norm (WNN)

摘要:
Iterative self-consistent parallel imaging reconstruction (SPIRiT) is an effective self-calibrated reconstruction model for parallel magnetic resonance imaging (PMRI). The joint L1 norm of wavelet or tight frame coefficients and joint total variation (TV) regularization terms are incorporated into the SPIRiT model to improve the reconstruction performance. The simultaneous two-directional low-rankness (STDLR) in k-space data is incorporated into SPIRiT to realize improved reconstruction. Recent methods have exploited the nonlocal self-similarity (NSS) of images by imposing nonlocal low-rankness of similar patches to achieve a superior performance. To fully utilize both the NSS in Magnetic resonance (MR) images and calibration consistency in the k-space domain, we propose a nonlocal low-rank (NLR)-SPIRiT model by incorporating NLR regularization into the SPIRiT model. We apply the weighted nuclear norm (WNN) as a surrogate of the rank and employ the Nash equilibrium (NE) formulation and alternating direction method of multipliers (ADMM) to efficiently solve the NLR-SPIRiT model. The experimental results demonstrate the superior performance of NLR-SPIRiT over the state-of-the-art methods via three objective metrics and visual comparison.Copyright © 2022. Published by Elsevier Inc.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 医学
小类 | 4 区 核医学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 核医学
JCR分区:
出版当年[2021]版:
Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号