高级检索
当前位置: 首页 > 详情页

Human motion pattern recognition based on the fused random forest algorithm

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650504, Peoples R China [2]Kunming Univ Sci & Technol, Yunnan Int Joint Lab Intelligent Control & Applica, Kunming 650504, Peoples R China [3]First Peoples Hosp Yunnan Prov, Dept Orthoped, Kunming 650032, Peoples R China
出处:
ISSN:

关键词: Human motion pattern recognition K-nearest neighbors-hierarchical clustering Optical motion capture system Particle swarm optimization Random forest

摘要:
In this paper, a fused random forest algorithm named (PSO-RF)-(KNN-HC) is proposed for the recognition of seven human motion patterns, including flat walking, sitting, standing, going up the stairs, going down the stairs, going up the slope and going down the slope. A particle swarm optimization (PSO) method is used to find the optimal parameters of the random forest model and build the optimal classification model. In the decision process of the random forest, the algorithm of k-nearest neighbors-hierarchical clustering (KNN-HC) is applied to select the decision trees for new recognition samples and calculate the voting weights of each tree, which improves the classification accuracy of the random forest model for multi-classification problems. In the data processing stage, the motion data are analyzed from view of the frequency domain using the fast Fourier transform (FFT) to divide the data segments in cycles and perform feature extraction. Finally, the proposed algorithm is validated against other machine learning algorithms based on a self-constructed human motion dataset through a real motion data acquisition platform, and the effectiveness of the proposed method is also validated on an open source dataset.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:综合 2 区 仪器仪表
最新[2023]版:
大类 | 2 区 工程技术
小类 | 2 区 工程:综合 2 区 仪器仪表
JCR分区:
出版当年[2022]版:
Q1 ENGINEERING, MULTIDISCIPLINARY Q1 INSTRUMENTS & INSTRUMENTATION
最新[2023]版:
Q1 ENGINEERING, MULTIDISCIPLINARY Q1 INSTRUMENTS & INSTRUMENTATION

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650504, Peoples R China [2]Kunming Univ Sci & Technol, Yunnan Int Joint Lab Intelligent Control & Applica, Kunming 650504, Peoples R China
通讯作者:
通讯机构: [1]Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming 650504, Peoples R China [2]Kunming Univ Sci & Technol, Yunnan Int Joint Lab Intelligent Control & Applica, Kunming 650504, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82325 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号