高级检索
当前位置: 首页 > 详情页

Predicting tumor deposits in rectal cancer: a combined deep learning model using T2-MR imaging and clinical features

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Qujing First Peoples Hosp, Dept Med Imaging Ctr, Qujing 655000, Yunnan, Peoples R China [2]Sichuan Univ, West China Hosp, Dept Radiol, Chengdu 610041, Sichuan, Peoples R China [3]Beijing Infervis Technol Co Ltd, Beijing, Peoples R China [4]Qujing First Peoples Hosp, Dept Joint & Sports Med, Qujing 655000, Yunnan, Peoples R China [5]Sichuan Univ, West China Hosp, Funct & Mol Imaging Key Lab Sichuan Prov, Chengdu 610041, Sichuan, Peoples R China [6]Sanya Peoples Hosp, Dept Radiol, Sanya 572000, Hainan, Peoples R China
出处:
ISSN:

关键词: Rectal cancer Tumor deposits Deep learning Hybrid neural network

摘要:
Background Tumor deposits (TDs) are associated with poor prognosis in rectal cancer (RC). This study aims to develop and validate a deep learning (DL) model incorporating T2-MR image and clinical factors for the preoperative prediction of TDs in RC patients.Methods and methodsA total of 327 RC patients with pathologically confirmed TDs status from January 2016 to December 2019 were retrospectively recruited, and the T2-MR images and clinical variables were collected. Patients were randomly split into a development dataset (n = 246) and an independent testing dataset (n = 81). A single-channel DL model, a multi-channel DL model, a hybrid DL model, and a clinical model were constructed. The performance of these predictive models was assessed by using receiver operating characteristics (ROC) analysis and decision curve analysis (DCA).Results The areas under the curves (AUCs) of the clinical, single-DL, multi-DL, and hybrid-DL models were 0.734 (95% CI, 0.674-0.788), 0.710 (95% CI, 0.649-0.766), 0.767 (95% CI, 0.710-0.819), and 0.857 (95% CI, 0.807-0.898) in the development dataset. The AUC of the hybrid-DL model was significantly higher than the single-DL and multi-DL models (both p < 0.001) in the development dataset, and the single-DL model (p = 0.028) in the testing dataset. Decision curve analysis demonstrated the hybrid-DL model had higher net benefit than other models across the majority range of threshold probabilities.Conclusions The proposed hybrid-DL model achieved good predictive efficacy and could be used to predict tumor deposits in rectal cancer.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2022]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Qujing First Peoples Hosp, Dept Med Imaging Ctr, Qujing 655000, Yunnan, Peoples R China [2]Sichuan Univ, West China Hosp, Dept Radiol, Chengdu 610041, Sichuan, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Qujing First Peoples Hosp, Dept Med Imaging Ctr, Qujing 655000, Yunnan, Peoples R China [2]Sichuan Univ, West China Hosp, Dept Radiol, Chengdu 610041, Sichuan, Peoples R China [5]Sichuan Univ, West China Hosp, Funct & Mol Imaging Key Lab Sichuan Prov, Chengdu 610041, Sichuan, Peoples R China [6]Sanya Peoples Hosp, Dept Radiol, Sanya 572000, Hainan, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82482 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号