高级检索
当前位置: 首页 > 详情页

Multiple machine-learning tools identifying prognostic biomarkers for acute Myeloid Leukemia

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Affiliated Hosp, Dept Blood Transfus, Peoples Hosp Yunnan Prov 1, 157 Jinbi Rd, Kunming 650034, Yunnan, Peoples R China
出处:
ISSN:

关键词: Acute Myeloid Leukemia Machine learning methods LASSO RF SVM-RFE eXtreme gradient boosting Pan-cancer

摘要:
BackgroundAcute Myeloid Leukemia (AML) generally has a relatively low survival rate after treatment. There is an urgent need to find new biomarkers that may improve the survival prognosis of patients. Machine-learning tools are more and more widely used in the screening of biomarkers.MethodsLeast Absolute Shrinkage and Selection Operator (LASSO), Support Vector Machine-Recursive Feature Elimination (SVM-RFE), Random Forest (RF), eXtreme Gradient Boosting (XGBoost), lrFuncs, IdaProfile, caretFuncs, and nbFuncs models were used to screen key genes closely associated with AML. Then, based on the Cancer Genome Atlas (TCGA), pan-cancer analysis was performed to determine the correlation between important genes and AML or other cancers. Finally, the diagnostic value of important genes for AML was verified in different data sets.ResultsThe survival analysis results of the training set showed 26 genes with survival differences. After the intersection of the results of each machine learning method, DNM1, MEIS1, and SUSD3 were selected as key genes for subsequent analysis. The results of the pan-cancer analysis showed that MEIS1 and DNM1 were significantly highly expressed in AML; MEIS1 and SUSD3 are potential risk factors for the prognosis of AML, and DNM1 is a potential protective factor. Three key genes were significantly associated with AML immune subtypes and multiple immune checkpoints in AML. The results of the verification analysis show that DNM1, MEIS1, and SUSD3 have potential diagnostic value for AML.ConclusionMultiple machine learning methods identified DNM1, MEIS1, and SUSD3 can be regarded as prognostic biomarkers for AML.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 医学:信息
JCR分区:
出版当年[2023]版:
Q2 MEDICAL INFORMATICS
最新[2023]版:
Q2 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Affiliated Hosp, Dept Blood Transfus, Peoples Hosp Yunnan Prov 1, 157 Jinbi Rd, Kunming 650034, Yunnan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号