高级检索
当前位置: 首页 > 详情页

Neural radiance fields-based multi-view endoscopic scene reconstruction for surgical simulation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Yunnan Normal Univ, Yunnan Key Lab Optoelect Informat Technol, Kunming 650500, Peoples R China [2]First Peoples Hosp Yunnan Prov, Dept Thorac Surg, Kunming 650100, Peoples R China
出处:
ISSN:

关键词: Endoscopic scene Neural radiance fields Novel view synthesis Volume rendering Surgical simulation

摘要:
PurposeIn virtual surgery, the appearance of 3D models constructed from CT images lacks realism, leading to potential misunderstandings among residents. Therefore, it is crucial to reconstruct realistic endoscopic scene using multi-view images captured by an endoscope.MethodsWe propose an Endoscope-NeRF network for implicit radiance fields reconstruction of endoscopic scene under non-fixed light source, and synthesize novel views using volume rendering. Endoscope-NeRF network with multiple MLP networks and a ray transformer network represents endoscopic scene as implicit field function with color and volume density at continuous 5D vectors (3D position and 2D direction). The final synthesized image is obtained by aggregating all sampling points on each ray of the target camera using volume rendering. Our method considers the effect of distance from the light source to the sampling point on the scene radiance.ResultsOur network is validated on the lung, liver, kidney and heart of pig collected by our device. The results show that the novel views of endoscopic scene synthesized by our method outperform existing methods (NeRF and IBRNet) in terms of PSNR, SSIM, and LPIPS metrics.ConclusionOur network can effectively learn a radiance field function with generalization ability. Fine-tuning the pre-trained model on a new endoscopic scene to further optimize the neural radiance fields of the scene, which can provide more realistic, high-resolution rendered images for surgical simulation.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学 3 区 核医学 3 区 外科
JCR分区:
出版当年[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 SURGERY Q3 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q2 SURGERY Q3 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Yunnan Normal Univ, Yunnan Key Lab Optoelect Informat Technol, Kunming 650500, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82500 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号