高级检索
当前位置: 首页 > 详情页

An artificial intelligence system for chronic atrophic gastritis diagnosis and risk stratification under white light endoscopy

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Wuhan Univ, Renmin Hosp, Wuhan, Peoples R China [2]Wuhan Univ, Renmin Hosp, Key Lab Hubei Prov Digest Syst Dis, Wuhan, Peoples R China [3]Wuhan Univ, Renmin Hosp, Hubei Prov Clin Res Ctr Digest Dis Minimally Invas, Wuhan, Peoples R China [4]First Peoples Hosp Yunnan Prov, Yunnan Digest Endoscopy Clin Med Ctr, Dept Gastroenterol, Kunming 650032, Peoples R China
出处:
ISSN:

关键词: Artificial intelligence Chronic atrophic gastritis Risk stratification

摘要:
Background and Aims: The diagnosis and stratification of gastric atrophy (GA) predict patients' gastric cancer progression risk and determine endoscopy surveillance interval. We aimed to construct an artificial intelligence (AI) system for GA endoscopic identification and risk stratification based on the KimuraTakemoto classification. Methods: We constructed the system using two trained models and verified its performance. First, we retrospectively collected 869 images and 119 videos to compare its performance with that of endoscopists in identifying GA. Then, we included original image cases of 102 patients to validate the system for stratifying GA and comparing it with endoscopists with different experiences. Results: The sensitivity of model 1 was higher than that of endoscopists (92.72% vs. 76.85 %) at image level and also higher than that of experts (94.87% vs. 85.90 %) at video level. The system outperformed experts in stratifying GA (overall accuracy: 81.37 %, 73.04 %, p = 0.045). The accuracy of this system in classifying non-GA, mild GA, moderate GA, and severe GA was 80.00 %, 77.42 %, 83.33 %, and 85.71 %, comparable to that of experts and better than that of seniors and novices. Conclusions: We established an expert-level system for GA endoscopic identification and risk stratification. It has great potential for endoscopic assessment and surveillance determinations. (c) 2024 The Author(s). Published by Elsevier Ltd on behalf of Editrice Gastroenterologica Italiana S.r.l. This is an open access article under the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ )

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 胃肠肝病学
JCR分区:
出版当年[2023]版:
Q1 GASTROENTEROLOGY & HEPATOLOGY
最新[2023]版:
Q1 GASTROENTEROLOGY & HEPATOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Wuhan Univ, Renmin Hosp, Wuhan, Peoples R China [2]Wuhan Univ, Renmin Hosp, Key Lab Hubei Prov Digest Syst Dis, Wuhan, Peoples R China [3]Wuhan Univ, Renmin Hosp, Hubei Prov Clin Res Ctr Digest Dis Minimally Invas, Wuhan, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Wuhan Univ, Renmin Hosp, Wuhan, Peoples R China [2]Wuhan Univ, Renmin Hosp, Key Lab Hubei Prov Digest Syst Dis, Wuhan, Peoples R China [3]Wuhan Univ, Renmin Hosp, Hubei Prov Clin Res Ctr Digest Dis Minimally Invas, Wuhan, Peoples R China [*1]Wuhan Univ, Dept Gastroenterol, Renmin Hosp, 99 Zhangzhidong Rd, Wuhan 430060, Hubei, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82493 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号