高级检索
当前位置: 首页 > 详情页

LungDiag: Empowering artificial intelligence for respiratory diseases diagnosis based on electronic health records, a multicenter study

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ ESCI

机构: [1]Guangzhou Med Univ, China State Key Lab Resp Dis, Dept Thorac Surg, Affiliated Hosp 1, Guangzhou, Peoples R China [2]Guangzhou Med Univ, Affiliated Hosp 1, Natl Clin Res Ctr Resp Dis, Key Lab Adv Interdisciplinary Studies Ctr, Guangzhou, Peoples R China [3]Guangzhou Natl Lab, Guangzhou, Peoples R China [4]Guangzhou Women & Childrens Med Ctr, Guangzhou, Peoples R China [5]Tianpeng Technol Co Ltd, Dept Res & Dev, Guangzhou, Peoples R China [6]Nanjing Med Univ, Sch Hlth Policy Management, Nanjing, Peoples R China [7]Nanjing Med Univ, Lab Digital Intelligence & Hlth Governance, Nanjing, Peoples R China [8]First Peoples Hosp Kashi Prefecture, Dept Resp Dis, Kashi, Peoples R China [9]Huazhong Univ Sci & Technol, Dept Resp & Crit Care Med, Natl Clin Res Ctr Resp Dis, Key Lab Pulm Dis,Hlth Minist,Tongji Hosp,Tongji Me, Wuhan, Hubei, Peoples R China [10]First Peoples Hosp Yunnan Prov, Dept Resp Dis, Kunming, Peoples R China [11]Guangzhou Med Univ, Affiliated Hosp 1, Key Lab Adv Interdisciplinary Studies Ctr, State Key Lab Resp Dis, Guangzhou, Guangdong, Peoples R China
出处:

关键词: artificial intelligence (AI) electronic medical records (EHRs) natural language processing (NLP) respiratory diseases

摘要:
Respiratory diseases pose a significant global health burden, with challenges in early and accurate diagnosis due to overlapping clinical symptoms, which often leads to misdiagnosis or delayed treatment. To address this issue, we developed LungDiag, an artificial intelligence (AI)-based diagnostic system that utilizes natural language processing (NLP) to extract key clinical features from electronic health records (EHRs) for the accurate classification of respiratory diseases. This study employed a large cohort of 31,267 EHRs from multiple centers for model training and internal testing. Additionally, prospective real-world validation was conducted using 1142 EHRs from three external centers. LungDiag demonstrated superior diagnostic performance, achieving an F1 score of 0.711 for top 1 diagnosis and 0.927 for top 3 diagnoses. In real-world testing, LungDiag outperformed both human experts and ChatGPT 4.0, achieving an F1 score of 0.651 for top 1 diagnosis. The study emphasizes the potential of LungDiag as an effective tool to support physicians in diagnosing respiratory diseases more accurately and efficiently. Despite the promising results, further large-scale multicenter validation with larger sample sizes is still needed to confirm its clinical utility and generalizability.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 医学:研究与实验
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Guangzhou Med Univ, China State Key Lab Resp Dis, Dept Thorac Surg, Affiliated Hosp 1, Guangzhou, Peoples R China [2]Guangzhou Med Univ, Affiliated Hosp 1, Natl Clin Res Ctr Resp Dis, Key Lab Adv Interdisciplinary Studies Ctr, Guangzhou, Peoples R China [3]Guangzhou Natl Lab, Guangzhou, Peoples R China
共同第一作者:
通讯作者:
通讯机构: [1]Guangzhou Med Univ, China State Key Lab Resp Dis, Dept Thorac Surg, Affiliated Hosp 1, Guangzhou, Peoples R China [2]Guangzhou Med Univ, Affiliated Hosp 1, Natl Clin Res Ctr Resp Dis, Key Lab Adv Interdisciplinary Studies Ctr, Guangzhou, Peoples R China [3]Guangzhou Natl Lab, Guangzhou, Peoples R China [6]Nanjing Med Univ, Sch Hlth Policy Management, Nanjing, Peoples R China [7]Nanjing Med Univ, Lab Digital Intelligence & Hlth Governance, Nanjing, Peoples R China [11]Guangzhou Med Univ, Affiliated Hosp 1, Key Lab Adv Interdisciplinary Studies Ctr, State Key Lab Resp Dis, Guangzhou, Guangdong, Peoples R China [*1]Nanjing Med Univ, Sch Hlth Policy & Management, Lab Digital Intelligence & Hlth Governance, Nanjing, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:84979 今日访问量:0 总访问量:692 更新日期:2025-02-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号