高级检索
当前位置: 首页 > 详情页

Automatic skeletal maturity grading from pelvis radiographs by deep learning for adolescent idiopathic scoliosis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Yunnan Univ, Sch Informat, East Outer Ring South Rd, Kunming 650504, Peoples R China [2]First Peoples Hosp Yunnan Prov, Orthoped Dept, 157 Jinbi Rd, Kunming 650034, Peoples R China
出处:
ISSN:

关键词: AIS Skeletal maturity grading Multi-task learning Spatial and channel reconstruction convolutional Swin block

摘要:
Adolescent idiopathic scoliosis (AIS) is a three-dimensional spine deformity governed of the spine. A child's Risser stage of skeletal maturity must be carefully considered for AIS evaluation and treatment. However, there are intra-observer and inter-observer inaccuracies in the Risser stage manual assessment. A multi-task learning approach is proposed to address the low precision issue of manual assessment. With our developed multi-task learning approach, the iliac area is extracted and forwarded to the improved Swin Transformer for Risser stage assessment. The spatial and channel reconstruction convolutional Swin block is adapted to each stage of the Swin Transformer to achieve better performance. The Risser stage assessment based on iliac region extraction had an overall accuracy of 81.53%. The accuracy increased in comparison to ResNet50, ResNet101, Uni-former, Next-ViT, ConvNeXt, and the original Swin Transformer by 5.85%, 4.6%, 3.6%, 2.7%, 2.25%, and 1.8%, respectively. The Grad-CAM visualization is used to understand the interpretability of our proposed model. The results show that the proposed multi-task learning strategy performs well on the Risser stage assessment. Our proposed automatic Risser stage assessment method benefits the clinical evaluation of AIS. Project address: https://github.com/xyz911015/Risser-stage-assessment

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2023]版:
大类 | 4 区 医学
小类 | 2 区 数学与计算生物学 4 区 计算机:跨学科应用 4 区 工程:生物医学 4 区 医学:信息
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q3 ENGINEERING, BIOMEDICAL Q3 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Yunnan Univ, Sch Informat, East Outer Ring South Rd, Kunming 650504, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:84979 今日访问量:0 总访问量:692 更新日期:2025-02-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号