高级检索
当前位置: 首页 > 详情页

Parameter Estimation and Q-Learning Based Adaptive Sensitivity Amplification Control for Cable-Driven Lower-Limb Exoskeleton

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automation, Kunming, Peoples R China [2]Kunming Univ Sci & Technol, Yunnan Key Lab Intelligent Control & Applicat, Kunming, Peoples R China [3]Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming, Peoples R China [4]First Peoples Hosp Yunnan Prov, Dept Orthoped, Kunming, Peoples R China
出处:
ISSN:

关键词: human-robot interaction lower-limb exoskeleton parameter estimation Q-learning sensitivity amplification control

摘要:
This paper presents a parameter estimation and an adaptive sensitivity amplification control (ASAC) for a cable driven lower-limb exoskeleton (CDLEX) to guarantee the tracking performance and enhance comfort in human-robot interaction (HRI). The cable-sheath actuator characterized by remote actuation capabilities and simplicity is applied to the lower-limb exoskeleton to establish a nonlinear integrated model. Aiming to identify the unknown parameters in this model, a novel adaptive parameter estimation framework driven by the extracted error information is proposed to improve the estimation veracity and convergence rate over to the traditional method. Moreover, a sensitivity amplification control (SAC) is adopted to maximize the sensitivity of the closed-loop system to external human-robot interaction (HRI) force/torque, where the stability and robustness are all analyzed. The proposed SAC dose not require the direct measurement of HRI in the SAC scheme. Therefore, it is possible to avoid installing the force/torque sensors between the human and the exoskeleton. To account for uncertainties in the interaction environment, such as the suddenly changing walking trajectories and individual gaits, the Q-learning algorithm is employed to realize online parameter tuning of SAC. Simulations and practical experiments are provided to illustrate the effectiveness of the proposed strategies.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 3 区 自动化与控制系统 3 区 工程:电子与电气 3 区 应用数学
JCR分区:
出版当年[2024]版:
最新[2023]版:
Q1 MATHEMATICS, APPLIED Q2 AUTOMATION & CONTROL SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC

影响因子: 最新[2023版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automation, Kunming, Peoples R China [2]Kunming Univ Sci & Technol, Yunnan Key Lab Intelligent Control & Applicat, Kunming, Peoples R China
通讯作者:
通讯机构: [2]Kunming Univ Sci & Technol, Yunnan Key Lab Intelligent Control & Applicat, Kunming, Peoples R China [3]Kunming Univ Sci & Technol, Fac Mech & Elect Engn, Kunming, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:90522 今日访问量:1 总访问量:763 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号 ICP备案:滇ICP备15003244号