高级检索
当前位置: 首页 > 详情页

Dynamic chaotic gravitational search algorithm-based kinetic parameter estimation of hepatocellular carcinoma on F-18-FDG PET/CT

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Yunnan Key Lab Artificial Intelligence, Kunming 650500, Yunnan, Peoples R China [2]Kunming Univ Sci & Technol, Peoples Hosp Yunnan 1, PET CT Ctr, Affiliated Hosp, Kunming 650031, Yunnan, Peoples R China
出处:
ISSN:

关键词: Kinetic models PET/CT Hepatocellular carcinoma Gravitational search algorithm

摘要:
Background: Kinetic parameters estimated with dynamic F-18-FDG PET/CT can help to characterize hepatocellular carcinoma (HCC). We aim to evaluate the feasibility of the gravitational search algorithm (GSA) for kinetic parameter estimation and to propose a dynamic chaotic gravitational search algorithm (DCGSA) to enhance parameter estimation. Methods: Five-minute dynamic PET/CT data of 20 HCCs were prospectively enrolled, and the kinetic parameters k(1) similar to k(4) and the hepatic arterial perfusion index (HPI) were estimated with a dual-input three-compartment model based on nonlinear least squares (NLLS), GSA and DCGSA. Results: The results showed that there were significant differences between the HCCs and background liver tissues for k(1), k(4) and the HPI of NLLS; k(1), k(3), k(4) and the HPI of GSA; and k(1), k(2), k(3), k(4) and the HPI of DCGSA. DCGSA had a higher diagnostic performance for k(3) than NLLS and GSA. Conclusions: GSA enables accurate estimation of the kinetic parameters of dynamic PET/CT in the diagnosis of HCC, and DCGSA can enhance the diagnostic performance.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 医学
小类 | 4 区 核医学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2021]版:
Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Yunnan Key Lab Artificial Intelligence, Kunming 650500, Yunnan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号