高级检索
当前位置: 首页 > 详情页

Dual-phase multiobjective Bayesian optimization method for estimating hepatocellular carcinoma dynamics parameters from PET/CT scans

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Yunnan Key Lab Artificial Intelligence, 727 South Jingming Rd, Kunming 650500, Peoples R China [2]Kunming Univ Sci & Technol, Affiliated Hosp, Peoples Hosp Yunnan Prov 1, PET CT Ctr, 157 Jinbi Rd, Kunming 650031, Peoples R China
出处:
ISSN:

关键词: Kinetic models positron emission tomography/computed tomography (PET/CT) hepatocellular carcinoma (HCC) Bayesian optimization (BO)

摘要:
Background: Optimization algorithms provide robust analytical frameworks for assessing hepatocellular carcinoma (HCC) pharmacokinetics based on dynamic positron emission tomography/computed tomography (PET/CT) scans. The aim of this study was to assess the role of estimating HCC pharmacokinetics from PET/ CT scans via the Bayesian optimization (BO) method and the dual-phase (DP) and multiobjective (MO) strategies into BO (DPMO-BO) method. Methods: Five-minute dynamic and one-minute static PET/CT imaging data derived from 27 HCC tumors were used to estimate kinetic parameters (K-1, k(2), k(3), k(4), f(a), v(b), K-i ) via a double-input three-compartment model. The role of pharmacokinetic parameters in distinguishing HCC was compared among the Bayesian method (BM), BO method, and DPMO-BO method. The fitting deviation between the predictions of the model and the actual observations was assessed via the root mean square error (RMSE). Results: The results demonstrated that the BM significantly distinguished HCC from background liver tissues with K-2 , k(3), f(a) , and b(v) (all P<0.05), whereas the BO method achieved this degree of differentiation for af and bv(both P<0.001). The DPMO-BO method resulted in significant differences in all of these parameters (K-1, k(2), k(3), k(4), f(a), v(b), K-i)(all P<0.05). DPMO-BO yielded greater area under the receiver operating characteristic (ROC) curve (AUC) values for K-i (AUC =0.709) than did BO (AUC =0.595, P<0.001). Additionally, reduced RMSEs for HCC and normal liver tissues were observed with DPMO-BO (1.226 and 1.051, respectively) relative to those values obtained with the BM (1.324 and 1.118, respectively) and BO (1.308 and 1.143, respectively). Conclusions: The BO method can be used to assess HCC pharmacokinetics, whereas the DPMO-BO method further enhances diagnostic performance by achieving improved fitting accuracy.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 核医学
JCR分区:
出版当年[2024]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2024]版:
Q2 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Yunnan Key Lab Artificial Intelligence, 727 South Jingming Rd, Kunming 650500, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:97658 今日访问量:0 总访问量:849 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号 ICP备案:滇ICP备15003244号