高级检索
当前位置: 首页 > 详情页

Mechanisms and clinical translation of ICOS/ICOSL signaling pathway blockade in delaying vascular complications of type 2 diabetes

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Hlth Management Ctr, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Kunming 650000, Yunnan, Peoples R China [2]Kunming Univ Sci & Technol, Dept Geriatr Med, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Kunming 650000, Yunnan, Peoples R China [3]Kunming Univ Sci & Technol, Kunming 650500, Yunnan, Peoples R China
出处:
ISSN:

关键词: ICOS/ICOSL signaling Type 2 diabetes Atherosclerosis Vascular complications

摘要:
BackgroundType 2 diabetes mellitus (T2DM) is often complicated by vascular conditions such as atherosclerosis, which contribute significantly to morbidity and mortality. The ICOS/ICOSL signaling pathway has emerged as a promising target for mitigating these complications. This study aims to investigate the effects of ICOS/ICOSL pathway blockade on vascular inflammation and endothelial dysfunction in T2DM and atherosclerosis, and to assess its potential for clinical translation.MethodsPeripheral blood mononuclear cells (PBMCs) were collected from T2DM patients, with and without atherosclerosis (AS), as well as healthy controls. ICAM-1 and VCAM-1 levels were measured by ELISA, and RNA sequencing was conducted to identify differentially expressed genes. In an animal model, diabetic mice were treated with ICOS-Fc fusion protein to block ICOS/ICOSL signaling. Endothelial dysfunction was modeled in mouse C166 cells and primary Human Umbilical Vein Endothelial Cells (HUVECs) using high glucose (HG), and the effects of ICOS-Fc on cell migration, angiogenesis, ROS production, apoptosis, and key signaling molecules were analyzed.ResultsICAM-1 and VCAM-1 levels were significantly elevated in both the T2DM and AS groups compared to controls. In vivo, treatment with ICOS-Fc not only reduced the expression of ICOS, ICOSL, ICAM-1, and VCAM-1 in the aortic tissue of diabetic mice but also significantly ameliorated hyperlipidemia and reduced atherosclerotic plaque burden. In HG-treated C166 cells, ICOS-Fc reduced ROS production and apoptosis while enhancing cell migration and angiogenesis. Crucially, in HUVECs, ICOS-Fc treatment reversed HG-induced inflammatory gene expression and restored angiogenic capacity, a benefit associated with the normalization of endothelial nitric oxide synthase (eNOS) phosphorylation.ConclusionBlocking the ICOS/ICOSL signaling pathway effectively mitigates vascular inflammation and endothelial dysfunction in T2DM with atherosclerosis. These findings suggest that targeting this pathway holds promise as a novel therapeutic strategy for managing vascular complications in T2DM.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 内分泌学与代谢
JCR分区:
出版当年[2024]版:
Q2 ENDOCRINOLOGY & METABOLISM
最新[2024]版:
Q2 ENDOCRINOLOGY & METABOLISM

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Hlth Management Ctr, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Kunming 650000, Yunnan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:95763 今日访问量:0 总访问量:832 更新日期:2025-08-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号 ICP备案:滇ICP备15003244号