高级检索
当前位置: 首页 > 详情页

ANO1 relieves pressure overload-induced myocardial fibrosis in mice by inhibiting TGF-beta/Smad3 signaling pathway

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Department of Cardiac Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, China [2]Department of Cardiology, The 1st People’s Hospital of Kunming City, Kunming, China
出处:
ISSN:

关键词: ANO1 Pressure overload Myocardial fibrosis TGF-beta/Smad3

摘要:
OBJECTIVE: The aim of this study was to measure the expression of anoctamin 1 (ANO1) in myocardial tissues of mice with pressure overload-induced myocardial fibrosis, and to further investigate the effect of ANO1 on myocardial fibrosis in mice and its mechanism. MATERIALS AND METHODS: A total of 40 male C57/B6 mice aged 6-8 weeks old were divided into 2 groups using a random number table, namely sham operation group (Sham group, n=20) and thoracic aortic constriction group (TAC group, n=20). Meanwhile, 20 ANO1 transgenic (TG) mice aged 6-8 weeks old were enrolled for TAC as TAC + ANO1 TG group. At 8 weeks after TAC. ejection fraction (EF%) and fraction shortening (FS%) in each group of mice were detected via echocardiography. Western blotting and immunofluorescence staining assays were conducted to measure the protein expression of ANO1 in myocardial tissues of mice in each group. The pathological changes in myocardial tissues of mice were evaluated through hematoxylin-eosin (H&E) staining. Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assay was performed to measure the messenger ribonucleic acid (mRNA) expression levels of hypertrophy markers atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in myocardial tissues of mice in each group. The deposition of collagen fibers in heart tissues was determined by Masson staining assay. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining assay was carried out to detect the apoptosis of myocardial cells and fibroblasts in heart tissues. Additionally, the protein expressions of oxidative stress markers superoxide dismutase 1 (SOD1) and 4-hydroxynonenal (4-HNE) in myocardial tissues were detected as well. Finally, Western blotting was employed to detect the effect of ANO1 over-expression on the expression of transforming growth factor-beta (TGF-beta)/Smad3 signaling pathway-related proteins in myocardial tissues of mice. RESULTS: At 8 weeks after TAC. ANO1 expression was overtly reduced in myocardial tissues of mice (p<0.05). Echocardiographic results showed that ANO1 overexpression significantly alleviated TAC-induced cardiac function deterioration in mice (p<0.05). The mRNA expression levels of ANP and BNP in myocardial tissues of TAC + ANO1 TG group were evidently lower than those in TAC group (p<0.05). Meanwhile, myocardial interstitial collagen deposition was significantly ameliorated in TAC + ANO1 TG group compared with TAC group (p<0.05). ANO1 overexpression notably mitigated the apoptosis of myocardial cells and oxidative stress in mice with cardiac pressure overload (p<0.05). Western blotting results further indicated that after overexpression of ANO1, the protein levels of TGF-beta and phosphorylated Smad3 (p-Smad3) were significantly inhibited in mice undergoing TAC (p<0.05). CONCLUSIONS: In the case of cardiac pressure overload in mice, ANO1 is lowly expressed in myocardial tissues. Meanwhile, its overexpression is able to attenuate pressure overload-induced myocardial fibrosis in mice by repressing the TGF-beta/smad3 signaling pathway. All our findings indicate that ANO1 can serve as a potential gene target for the treatment of myocardial fibrosis in the future.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 医学
小类 | 3 区 药学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 药学
JCR分区:
出版当年[2019]版:
Q2 PHARMACOLOGY & PHARMACY
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Department of Cardiac Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号