高级检索
当前位置: 首页 > 详情页

CircPITX1 Regulates Proliferation, Angiogenesis, Migration, Invasion, and Cell Cycle of Human Glioblastoma Cells by Targeting miR-584-5p/KPNB1 Axis.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, The First Affiliated Hospitalof Kunming Medical University, Kunming 650032, Yunnan,China [2]Department of Neurosurgery, The First Affiliated Hospitalof Zhengzhou University, Zhengzhou 450001, Henan, China
出处:
ISSN:

关键词: CircRNAs CircPITX1 MiR-584-5p KPNB1 GBM

摘要:
Recent researches reported that several circular RNAs (circRNAs) were associated with the glioblastoma (GBM) progression, while the regulatory role of circPITX1 remains unknown in GBM. The real-time quantitative polymerase chain reaction (RT-qPCR) was used to quantify circPITX1, miR-584-5p, and karyopherin b1 (KPNB1) expression in GBM tissues and cells. The proliferation capability of cells was analyzed by Cell Counting Kit-8 (CCK-8) and colony-forming assays. The matrigel angiogenesis assay was used to assess tube formation in GBM cells. Flow cytometry assays were conducted to evaluate the cell cycle distribution of GBM cells. The migration and invasion assays were assessed by transwell assay. The Western blot assay was employed to quantify the protein expression level in GBM tissues and cells. The targets of circPITX1 and miR-584-5p were confirmed by dual-luciferase reporter and RNA pull-down assays. A xenograft experiment in nude mice was used to assess the functional role of circPITX1 in vivo. CircPITX1 was obviously overexpressed in GBM tissues and cells when compared with negative groups. The functional experiment implied that knockdown of circPITX1 suppressed proliferation, angiogenesis, migration, invasion, and tumor growth in vivo along with induced cell cycle arrest of GBM cells. Furthermore, miR-584-5p was a target gene of circPITX1, and knockdown of miR-584-5p could abolish circPITX1 silencing-induced effects on GBM cells. KPNB1 was a target gene of miR-584-5p, and functional experiments revealed that overexpression of miR-584-5p repressed proliferation, angiogenesis, migration, invasion, and cell cycle process in GBM cells by targeting KPNB1. Mechanistically, circPITX1/miR-584-5p/KPNB1 axis regulated GBM process via mediating proliferation, angiogenesis, migration, invasion, and cell cycle process of GBM cells.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 4 区 生化与分子生物学 4 区 神经科学
最新[2023]版:
大类 | 4 区 医学
小类 | 4 区 生化与分子生物学 4 区 神经科学
JCR分区:
出版当年[2020]版:
Q3 NEUROSCIENCES Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q2 NEUROSCIENCES Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, The First Affiliated Hospitalof Kunming Medical University, Kunming 650032, Yunnan,China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82478 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号