高级检索
当前位置: 首页 > 详情页

Intelligent Intraoperative Haptic-AR Navigation for COVID-19 Lung Biopsy Using Deep Hybrid Model

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Yunnan Normal Univ, Yunnan Key Lab Optoelect Informat Technol, Kunming 650500, Yunnan, Peoples R China [2]Yunnan First Peoples Hosp, Dept Thorac Surg, Kunming 650000, Yunnan, Peoples R China [3]Abdul Wali Khan Univ Mardan, Mardan 23200, Pakistan [4]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Kunming 650093, Yunnan, Peoples R China
出处:
ISSN:

关键词: COVID-19 Surgery Navigation Biopsy Lung Biological system modeling Solid modeling AR-based COVID-19 lung biopsy surgical navigation WPD-CNN-LSTM (WCL) model

摘要:
A novel intelligent navigation technique for accurate image-guided COVID-19 lung biopsy is addressed, which systematically combines augmented reality (AR), customized haptic-enabled surgical tools, and deep neural network to achieve customized surgical navigation. Clinic data from 341 COVID-19 positive patients, with 1598 negative control group, have collected for the model synergy and evaluation. Biomechanics force data from the experiment are applied a WPD-CNN-LSTM (WCL) to learn a new patient-specific COVID-19 surgical model, and the ResNet was employed for the intraoperative force classification. To boost the user immersion and promote the user experience, intro-operational guiding images have combined with the haptic-AR navigational view. Furthermore, a 3-D user interface (3DUI), including all requisite surgical details, was developed with a real-time response guaranteed. Twenty-four thoracic surgeons were invited to the objective and subjective experiments for performance evaluation. The root-mean-square error results of our proposed WCL model is 0.0128, and the classification accuracy is 97%, which demonstrated that the innovative AR with deep learning (DL) intelligent model outperforms the existing perception navigation techniques with significantly higher performance. This article shows a novel framework in the interventional surgical integration for COVID-19 and opens the new research about the integration of AR, haptic rendering, and deep learning for surgical navigation.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 工程技术
小类 | 1 区 自动化与控制系统 1 区 计算机:跨学科应用 1 区 工程:工业
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 自动化与控制系统 1 区 计算机:跨学科应用 1 区 工程:工业
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, INDUSTRIAL Q1 AUTOMATION & CONTROL SYSTEMS
最新[2023]版:
Q1 AUTOMATION & CONTROL SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 ENGINEERING, INDUSTRIAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Yunnan Normal Univ, Yunnan Key Lab Optoelect Informat Technol, Kunming 650500, Yunnan, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号