高级检索
当前位置: 首页 > 详情页

Diagnosis of Lung Cancer by FTIR Spectroscopy Combined With Raman Spectroscopy Based on Data Fusion and Wavelet Transform

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Yunnan Normal Univ, Sch Phys & Elect Informat, Yunnan Key Lab Optoelect Informat Technol, Kunming, Yunnan, Peoples R China [2]First Peoples Hosp Yunnan Prov, Dept Thorac Surg, Kunming, Yunnan, Peoples R China [3]Zunyi Med Univ, Sch Preclin Med, Zunyi, Guizhou, Peoples R China [4]Qujing Normal Univ, Sch Phys & Elect Engn, Qujing, Peoples R China
出处:
ISSN:

关键词: lung cancer FTIR spectroscopy Raman spectroscopy data fusion wavelet transform

摘要:
Lung cancer is a fatal tumor threatening human health. It is of great significance to explore a diagnostic method with wide application range, high specificity, and high sensitivity for the detection of lung cancer. In this study, data fusion and wavelet transform were used in combination with Fourier transform infrared (FTIR) spectroscopy and Raman spectroscopy to study the serum samples of patients with lung cancer and healthy people. The Raman spectra of serum samples can provide more biological information than the FTIR spectra of serum samples. After selecting the optimal wavelet parameters for wavelet threshold denoising (WTD) of spectral data, the partial least squares-discriminant analysis (PLS-DA) model showed 93.41% accuracy, 96.08% specificity, and 90% sensitivity for the fusion data processed by WTD in the prediction set. The results showed that the combination of FTIR spectroscopy and Raman spectroscopy based on data fusion and wavelet transform can effectively diagnose patients with lung cancer, and it is expected to be applied to clinical screening and diagnosis in the future.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 化学
小类 | 3 区 化学:综合
最新[2023]版:
大类 | 3 区 化学
小类 | 3 区 化学:综合
JCR分区:
出版当年[2021]版:
Q2 CHEMISTRY, MULTIDISCIPLINARY
最新[2023]版:
Q2 CHEMISTRY, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Yunnan Normal Univ, Sch Phys & Elect Informat, Yunnan Key Lab Optoelect Informat Technol, Kunming, Yunnan, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号