高级检索
当前位置: 首页 > 详情页

Biological knowledge graph-guided investigation of immune therapy response in cancer with graph neural network

文献详情

资源类型:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China. [2]University of Chinese Academy of Sciences, Beijing 100049, China. [3]The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China.
出处:
ISSN:

关键词: immune checkpoints inhibitors deep learning graph neural networks

摘要:
The determination of transcriptome profiles that mediate immune therapy in cancer remains a major clinical and biological challenge. Despite responses induced by immune-check points inhibitors (ICIs) in diverse tumor types and all the big breakthroughs in cancer immunotherapy, most patients with solid tumors do not respond to ICI therapies. It still remains a big challenge to predict the ICI treatment response. Here, we propose a framework with multiple prior knowledge networks guided for immune checkpoints inhibitors prediction-DeepOmix-ICI (or ICInet for short). ICInet can predict the immune therapy response by leveraging geometric deep learning and prior biological knowledge graphs of gene-gene interactions. Here, we demonstrate more than 600 ICI-treated patients with ICI response data and gene expression profile to apply on ICInet. ICInet was used for ICI therapy responses prediciton across different cancer types-melanoma, gastric cancer and bladder cancer, which includes 7 cohorts from different data sources. ICInet is able to robustly generalize into multiple cancer types. Moreover, the performance of ICInet in those cancer types can outperform other ICI biomarkers in the clinic. Our model [area under the curve (AUC = 0.85)] generally outperformed other measures, including tumor mutational burden (AUC = 0.62) and programmed cell death ligand-1 score (AUC = 0.74). Therefore, our study presents a prior-knowledge guided deep learning method to effectively select immunotherapy-response-associated biomarkers, thereby improving the prediction of immunotherapy response for precision oncology.© The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 生物学
小类 | 1 区 生化研究方法 1 区 数学与计算生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 1 区 生化研究方法 1 区 数学与计算生物学
JCR分区:
出版当年[2022]版:
Q1 BIOCHEMICAL RESEARCH METHODS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 BIOCHEMICAL RESEARCH METHODS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China. [*2]Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China ,University of Chinese Academy of Sciences
共同第一作者:
通讯作者:
通讯机构: [1]Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China. [*1]Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China , University of Chinese Academy of Sciences ,Shandong First Medical University and Shandong Academy of Medical Sciences [*2]Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China ,University of Chinese Academy of Sciences
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号