高级检索
当前位置: 首页 > 详情页

Potentiating humoral and cellular immunity using a novel hybrid polymer-lipid nanoparticle adjuvant for HBsAg-VLP vaccine

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, No. 1098 Xueyuan Avenue, Shenzhen, 518000, Guangdong, China. [2]Department of Pharmacy, First People's Hospital of Yunnan Province, Kunming University of Science and Technology, No. 157 Jinbi Road, Kunming, 650034, Yunnan, China. [3]First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China. [4]Centre of Integrated Chinese and Western Medicine, School of Clinical Medicine, Qingdao University, Qingdao, China. [5]The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
出处:
ISSN:

关键词: Hybrid polymer-lipid nanoparticle HBV Vaccine adjuvant Humoral immunity Cellular immunity

摘要:
Aluminium adjuvants are commonly used in vaccines to stimulate the immune system, but they have limited ability to promote cellular immunity which is necessary for clearing viral infections like hepatitis B. Current adjuvants that do promote cellular immunity often have undesired side effects due to the immunostimulants they contain. In this study, a hybrid polymer lipid nanoparticle (HPLNP) was developed as an efficient adjuvant for the hepatitis B surface antigen (HBsAg) virus-like particle (VLP) vaccine to potentiate both humoral and cellular immunity. The HPLNP is composed of FDA approved polyethylene glycol-b-poly (L-lactic acid) (PEG-PLLA) polymer and cationic lipid 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP), and can be easily prepared by a one-step method. The cationic optimised vaccine formulation HBsAg/HPLNP (w/w = 1/600) can maximise the cell uptake of the antigen due to the electrostatic adsorption between the vaccine nanoparticle and the cell membrane of antigen-presenting cells. The HPLNP prolonged the retention of the antigen at the injection site and enhanced the lymph node drainage of antigen, resulting in a higher concentration of serum anti-HBsAg IgG compared to the HBsAg group or the HBsAg/Al group after the boost immunisation in mice. The HPLNP also promoted a strong Th1-driven immune response, as demonstrated by the significantly improved IgG2a/IgG1 ratio, increased production of IFN-γ, and activation of CD4 + and CD8 + T cells in the spleen and lymph nodes. Importantly, the HPLNP demonstrated no systemic toxicity during immunisation. The advantages of the HPLNP, including good biocompatibility, easy preparation, low cost, and its ability to enhance both humoral and cellular immune responses, suggest its suitability as an efficient adjuvant for protein-based vaccines such as HBsAg-VLP. These findings highlight the promising potential of the HPLNP as an HBV vaccine adjuvant, offering an alternative to aluminium adjuvants currently used in vaccines.© 2023. The Author(s).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 生物学
小类 | 1 区 生物工程与应用微生物 2 区 纳米科技
最新[2025]版:
大类 | 1 区 生物学
小类 | 1 区 生物工程与应用微生物 2 区 纳米科技
JCR分区:
出版当年[2022]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q1 NANOSCIENCE & NANOTECHNOLOGY
最新[2023]版:
Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Q1 NANOSCIENCE & NANOTECHNOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Emergency Medicine, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, No. 1098 Xueyuan Avenue, Shenzhen, 518000, Guangdong, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:87470 今日访问量:0 总访问量:721 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号