高级检索
当前位置: 首页 > 详情页

MAMILNet: advancing precision oncology with multi-scale attentional multi-instance learning for whole slide image analysis

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Dept Pathol, Kunming, Yunnan, Peoples R China [2]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Dept MRI, Kunming, Yunnan, Peoples R China [3]Fudan Univ, Shanghai, Peoples R China [4]Kunming Univ Sci & Technol, Affiliated Hosp, Sch Clin Med, Kunming, Yunnan, Peoples R China [5]Kunming Med Univ, Affiliated Hosp 3, Tumor Hosp Yunnan Prov, Dept Pathol, Kunming, Yunnan, Peoples R China [6]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Dept Med Oncol, Kunming, Yunnan, Peoples R China
出处:
ISSN:

关键词: whole slide image analysis multiple instance learning cancer diagnosis multi-scale attention deep learning

摘要:
Background Whole Slide Image (WSI) analysis, driven by deep learning algorithms, has the potential to revolutionize tumor detection, classification, and treatment response prediction. However, challenges persist, such as limited model generalizability across various cancer types, the labor-intensive nature of patch-level annotation, and the necessity of integrating multi-magnification information to attain a comprehensive understanding of pathological patterns.Methods In response to these challenges, we introduce MAMILNet, an innovative multi-scale attentional multi-instance learning framework for WSI analysis. The incorporation of attention mechanisms into MAMILNet contributes to its exceptional generalizability across diverse cancer types and prediction tasks. This model considers whole slides as "bags" and individual patches as "instances." By adopting this approach, MAMILNet effectively eliminates the requirement for intricate patch-level labeling, significantly reducing the manual workload for pathologists. To enhance prediction accuracy, the model employs a multi-scale "consultation" strategy, facilitating the aggregation of test outcomes from various magnifications.Results Our assessment of MAMILNet encompasses 1171 cases encompassing a wide range of cancer types, showcasing its effectiveness in predicting complex tasks. Remarkably, MAMILNet achieved impressive results in distinct domains: for breast cancer tumor detection, the Area Under the Curve (AUC) was 0.8872, with an Accuracy of 0.8760. In the realm of lung cancer typing diagnosis, it achieved an AUC of 0.9551 and an Accuracy of 0.9095. Furthermore, in predicting drug therapy responses for ovarian cancer, MAMILNet achieved an AUC of 0.7358 and an Accuracy of 0.7341.Conclusion The outcomes of this study underscore the potential of MAMILNet in driving the advancement of precision medicine and individualized treatment planning within the field of oncology. By effectively addressing challenges related to model generalization, annotation workload, and multi-magnification integration, MAMILNet shows promise in enhancing healthcare outcomes for cancer patients. The framework's success in accurately detecting breast tumors, diagnosing lung cancer types, and predicting ovarian cancer therapy responses highlights its significant contribution to the field and paves the way for improved patient care.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 肿瘤学
JCR分区:
出版当年[2023]版:
Q2 ONCOLOGY
最新[2023]版:
Q2 ONCOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Dept Pathol, Kunming, Yunnan, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号