高级检索
当前位置: 首页 > 详情页

Positron Emission Tomography Lung Image Respiratory Motion Correcting with Equivariant Transformer

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Yunnan Key Lab Artificial Intelligence, Kunming 650500, Peoples R China [2]Yuxi Normal Univ, Sch Phys & Elect Engn, Yuxi 653100, Peoples R China [3]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, PET CT Ctr, Affiliated Hosp, Kunming 650031, Peoples R China
出处:
ISSN:

关键词: PET lung scans respiratory motion correction triple equivariant motion transformer lie group motion decomposition

摘要:
In addressing the challenge of motion artifacts in Positron Emission Tomography (PET) lung scans, our study introduces the Triple Equivariant Motion Transformer (TEMT), an innovative, unsupervised, deep-learningbased framework for efficient respiratory motion correction in PET imaging. Unlike traditional techniques, which segment PET data into bins throughout a respiratory cycle and often face issues such as inefficiency and overemphasis on certain artifacts, TEMT employs Convolutional Neural Networks (CNNs) for effective feature extraction and motion decomposition.TEMT's unique approach involves transforming motion sequences into Lie group domains to highlight fundamental motion patterns, coupled with employing competitive weighting for precise target deformation field generation. Our empirical evaluations confirm TEMT's superior performance in handling diverse PET lung datasets compared to existing image registration networks. Experimental results demonstrate that TEMT achieved Dice indices of 91.40%, 85.41%, 79.78%, and 72.16% on simulated geometric phantom data, lung voxel phantom data, cardiopulmonary voxel phantom data, and clinical data, respectively. To facilitate further research and practical application, the TEMT framework, along with its implementation details and part of the simulation data, is made publicly accessible at https://github.com/yehaowei/temt.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 4 区 计算机科学
小类 | 3 区 材料科学:综合 4 区 计算机:信息系统
JCR分区:
出版当年[2023]版:
Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
最新[2023]版:
Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Yunnan Key Lab Artificial Intelligence, Kunming 650500, Peoples R China [2]Yuxi Normal Univ, Sch Phys & Elect Engn, Yuxi 653100, Peoples R China
通讯作者:
通讯机构: [1]Kunming Univ Sci & Technol, Fac Informat Engn & Automat, Yunnan Key Lab Artificial Intelligence, Kunming 650500, Peoples R China [2]Yuxi Normal Univ, Sch Phys & Elect Engn, Yuxi 653100, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号