高级检索
当前位置: 首页 > 详情页

Respiratory Motion Correction on PET Images Based on 3D Convolutional Neural Network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Kunming Univ Sci & Technol, Sch Informat Engn & Automat, Kunming 650504, Yunnan, Peoples R China [2]First Peoples Hosp Yunnan, PET CT Ctr, Kunming 650031, Yunnan, Peoples R China
出处:
ISSN:

关键词: PET images Respiratory motion correction Image registration Deep learning

摘要:
Motion blur in PET (Positron emission tomography) images induced by respiratory motion will reduce the quality of imaging. Although exiting methods have positive performance for respiratory motion correction in medical practice, there are still many aspects that can be improved. In this paper, an improved 3D unsupervised framework, Res-Voxel based on U -Net network was proposed for the motion correction. The Res-Voxel with multiple residual structure may improve the ability of predicting deformation field, and use a smaller convolution kernel to reduce the parameters of the model and decrease the amount of computation required. The proposed is tested on the simulated PET imaging data and the clinical data. Experimental results demonstrate that the proposed achieved Dice indices 93.81%, 81.75% and 75.10% on the simulated geometric phantom data, voxel phantom data and the clinical data respectively. It is demonstrated that the proposed method can improve the registration and correction performance of PET image.

语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 电信学
最新[2023]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 电信学
JCR分区:
出版当年[2021]版:
Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Q4 TELECOMMUNICATIONS
最新[2023]版:
Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Q4 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Kunming Univ Sci & Technol, Sch Informat Engn & Automat, Kunming 650504, Yunnan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号