高级检索
当前位置: 首页 > 详情页

Robust self management classification via sparse representation based discriminative model for mild cognitive impairment associated with diabetes mellitus

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Fujian Med Univ, Sch Nursing, 1 Xuefu North Rd, Fuzhou 350122, Fujian, Peoples R China [2]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Dept Nursing, Kunming 650032, Yunnan, Peoples R China [3]Guangdong Univ Technol, Sch Automat, 100 West Rd,Outer Ring Rd, Guangzhou 510006, Guangdong, Peoples R China [4]Fujian Med Univ, Fujian Prov Hosp, 134 East St, Fuzhou 350001, Fujian, Peoples R China [5]Fujian Med Univ, Shengli Clin Med Coll, 134 East St, Fuzhou 350001, Fujian, Peoples R China [6]Fujian Med Univ, Fujian Prov Hosp, Endocrinol Dept, 134 East St, Fuzhou 350001, Fujian, Peoples R China [7]Fujian Med Univ, Fujian Prov Hosp, Neurol Dept, 134 East St, Fuzhou 350001, Fujian, Peoples R China
出处:
ISSN:

关键词: Mild cognitive impairment Diabetes mellitus Self-management Sparse representation

摘要:
Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e. self-management) have a significant impact on the development of their condition. Thus, the inclusion and discrimination of subsequent interventions according to their self-management is an urgent issue. A Sparse-representation-based Discriminative Classification model (SDC) is proposed in this paper to correctly classify MCI-DM patients based on their self-management ability. Specifically, an L1-minimization sparse representation model, an efficient machine learning model, is used to obtain the sparse histogram that encodes the identity of the test sample. Then, the coefficient of determination \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:{R}<^>{2}$$\end{document} is adopted to determine the category based on the sparse histogram of the test sample. Extensive experiments on the self-management data of DM-MCI are conducted to verify the effectiveness of SDC. The experimental results show that the accuracy \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:\mathcal{A}$$\end{document}, precision \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:\mathcal{P}$$\end{document}, recall \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:\mathcal{R}$$\end{document}, and F1-score \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\:\mathcal{F}$$\end{document} are 94.3%, 95.0%, 94.3%, and 94.5%, respectively, demonstrating the excellent performance of SDC. The model used in this study has high accuracy and can be used for subgroup discrimination. The use of the sparse representation model in this study has supportive implications for the inclusion of research subjects in clinical intervention strategies.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 综合性期刊
小类 | 2 区 综合性期刊
JCR分区:
出版当年[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES
最新[2023]版:
Q1 MULTIDISCIPLINARY SCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Fujian Med Univ, Sch Nursing, 1 Xuefu North Rd, Fuzhou 350122, Fujian, Peoples R China [2]Kunming Univ Sci & Technol, Peoples Hosp Yunnan Prov 1, Affiliated Hosp, Dept Nursing, Kunming 650032, Yunnan, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:86907 今日访问量:1 总访问量:707 更新日期:2025-03-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号