高级检索
当前位置: 首页 > 详情页

MAO-A inhibition alleviates sepsis-driven lung injury via Nrf2/HO-1 pathway activation and suppression of pyroptosis

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Kunming Med Univ, Affiliated Hosp 1, Infect Management Dept, Kunming, Yunnan, Peoples R China [2]Dali Prefecture Peoples Hosp, Cardiothorac Surg Dept, Kunming, Yunnan, Peoples R China [3]Kunming First Peoples Hosp, Thorac & Cardiac Surg Dept, Kunming, Yunnan, Peoples R China [4]Third Peoples Hosp Yunnan Prov, Gen Surg Dept, Kunming, Yunnan, Peoples R China [5]Kunming Med Univ, Affiliated Hosp 1, Thorac Surg Dept, 295 Xichang Rd, Kunming 650031, Yunnan, Peoples R China
出处:
ISSN:

关键词: MAO-A Sepsis Acute lung injury Pyroptosis Inflammation Nrf2

摘要:
Extensive research has highlighted the involvement of excessive oxidative stress and pyroptosis in sepsis-caused acute lung injury (ALI). The present investigation delves into the potential role of Monoamine oxidase A (MAO-A) in this pathological process. Analyzing Gene Expression Omnibus (GEO) datasets alongside clinical samples revealed a significant upregulation of MAO-A in sepsis patients. To further elucidate this, cecal ligation puncture (CLP)-induced ALI were established in C57BL/6 mice. Additionally, human alveolar epithelial cells (HPAEpiC) treated with MAO-A inhibitor RO11-11639 were subjected to lipopolysaccharide (LPS) stimulation in vitro. The in-vivo experiments demonstrated that RO11-11639 mitigated CLP-induced ALI, significantly reducing pulmonary oxidative stress, inflammation and pyroptosis in lung tissue. Biochemical quantification revealed significant suppression of both oxidative stress biomarkers reactive oxygen species (ROS), malondialdehyde (MDA) and key inflammatory markers interleukin (IL)-1 beta, IL-16. Consistent with these findings, the in-vitro model confirmed that RO11-11639 reduced ROS and MDA accumulation, and inflammation in HPAEpiC, in response to LPS stimulation. Moreover, functional rescue analysis delineated the nuclear factor erythropoietin-2-related factor 2/heme oxygenase 1 (Nrf2/HO-1) pathway as the critical mediator of RO11-11639's dual antioxidant and anti-pyroptosis activities in HPAEpiC. Mechanistically, MAO-A inhibition promoted the nuclear translocation of Nrf2, thereby activating the downstream regulatory proteins HO-1, quinone oxidoreductase 1 (NQO-1) and glutathione s-transferase (CST). These data cumulatively indicate that pharmacological targeting of MAO-A may offer therapeutic benefits in septic ALI by attenuating pathophysiological processes involving oxidative damage and inflammasome-mediated pyroptosis.

语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
最新[2025]版:
大类 | 3 区 生物学
小类 | 4 区 细胞生物学
JCR分区:
出版当年[2024]版:
Q4 CELL BIOLOGY
最新[2024]版:
Q4 CELL BIOLOGY

影响因子: 最新[2024版] 最新五年平均 出版当年[2024版] 出版当年五年平均 出版前一年[2023版]

第一作者:
第一作者机构: [1]Kunming Med Univ, Affiliated Hosp 1, Infect Management Dept, Kunming, Yunnan, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:98260 今日访问量:0 总访问量:858 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号 ICP备案:滇ICP备15003244号