高级检索
当前位置: 首页 > 详情页

Transcriptome Analysis of Choroid and Retina From Tree Shrew With Choroidal Neovascularization Reveals Key Signaling Moieties.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China, [2]Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China, [3]Kunming Medical University, Kunming, China, [4]Yunnan Eye Institute, The Second People’s Hospital of Yunnan, Kunming, China
出处:
ISSN:

关键词: choroidal neovascularization transcriptome sequencing bioinformatics tree shrew signal transduction

摘要:
Pathological neovascularization in choroid, a leading cause of blindness, is a characteristic of many fundus diseases, such as diabetic retinopathy and age-related macular degeneration. The present study aimed to elucidate the key signaling pathways in choroidal neovascularization (CNV) by analyzing the mRNA profiles of choroid and retina in tree shrews with CNV. We induced choroidal angiogenesis by laser photocoagulation in 15 tree shrews and obtained mRNA profiles of their choroids and retinas by high-throughput transcriptome sequencing. Hierarchical cluster analysis, weighted gene co-expression network analysis (WGCNA), protein-protein interaction (PPI) network analysis, hematoxylin and eosin (HE) staining, CD31 immunohistochemistry (IHC), and reverse transcription quantitative PCR (RT-qPCR) were performed. After laser photocoagulation, we obtained a total of 350 differentially expressed genes (DEGs) in the choroid, including 59 genes in Module-FASN ("ME-FASN") module and 28 genes in Module-RPL ("ME-RPL") module. A total of 69 DEGs in retina, including 20 genes in Module-SLC ("ME-SLC") module. Bioinformatics analysis demonstrated that DEGs in choroid were mainly involved in membrane transport; DEGs in "ME-RPL" were prominent in pathways associated with IgA production, antigen presentation, and cell adhesion molecules (CAMs) signaling. DEGs in "ME-FASN" were involved in fatty acid metabolism and PPAR signaling pathway, while DEGs in "ME-SLC" were involved in GABAergic synapse, neuroactive life receptor interaction, cholinergic synapse, and retrograde endocannabinoid signaling pathway. PPI network analysis demonstrated that the ribosomal protein family genes (RPL31, RPL7, RPL26L1, and RPL19) are key factors of "ME-RPL," acyl-CoA superfamily genes (ACACA, ACAT1, ACAA2, and ACACB) and FASN are key factors of "ME-FASN" and superfamily of solid carrier genes (SLC17A6, SLC32A1, SLC12A5, and SLC6A1) and complement genes (C4A, C3, and C2) are key factors of "ME-SLC." In conclusion, the present study discovered the important signal transductions (fatty acid metabolic pathway and CAMs signaling) and genes (ribosomal protein family and the complement system) in tree shrew CNV. We consider that our findings hold implications in unraveling molecular mechanisms that underlie occurrence and development of CNV. Copyright © 2021 Jia, Qiu, Lu, Wang, Li, Han, Tong, Sun, Wu and Dai.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 生物
小类 | 3 区 遗传学
最新[2023]版:
大类 | 3 区 生物学
小类 | 3 区 遗传学
JCR分区:
出版当年[2020]版:
Q2 GENETICS & HEREDITY
最新[2023]版:
Q2 GENETICS & HEREDITY

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China, [2]Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, China,
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:82490 今日访问量:0 总访问量:681 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 云南省第一人民医院 技术支持:重庆聚合科技有限公司 地址:云南省昆明市西山区金碧路157号